首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2160篇
  免费   63篇
  国内免费   7篇
工业技术   2230篇
  2023年   7篇
  2022年   8篇
  2021年   35篇
  2020年   23篇
  2019年   27篇
  2018年   34篇
  2017年   28篇
  2016年   48篇
  2015年   35篇
  2014年   73篇
  2013年   194篇
  2012年   127篇
  2011年   136篇
  2010年   104篇
  2009年   108篇
  2008年   141篇
  2007年   90篇
  2006年   85篇
  2005年   82篇
  2004年   77篇
  2003年   72篇
  2002年   59篇
  2001年   55篇
  2000年   44篇
  1999年   56篇
  1998年   79篇
  1997年   57篇
  1996年   65篇
  1995年   34篇
  1994年   36篇
  1993年   28篇
  1992年   21篇
  1991年   23篇
  1990年   17篇
  1989年   14篇
  1988年   12篇
  1987年   7篇
  1986年   10篇
  1985年   10篇
  1984年   10篇
  1983年   7篇
  1982年   9篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1974年   3篇
  1973年   3篇
排序方式: 共有2230条查询结果,搜索用时 31 毫秒
81.
ABSTRACT

An analytical solution to the antiplane elasticity problem associated with two circular inclusions interacting with a line crack is provided in this article. A series solution for the stress field is derived in an elegant form by using complex variable theory in conjunction with the alternation method. Based on the superposition method, a singular integral equation (SIE) is established from the traction-free condition along the crack surface. After solving the SIE, the mode-III stress intensity factors (SIFs) can be obtained to quantify the singular behavior of the stress field ahead of the crack tips. Numerical results of the SIFs, when a crack is embedded either in the inclusion or in the matrix, are discussed in detail and displayed in graphic form.  相似文献   
82.
In a product life cycle, an assembly sequence is required to produce a new product at the start, whereas a disassembly sequence is needed at the end. In typical assembly and disassembly sequence planning approaches, the two are performed as two independent tasks. In this way, a good assembly sequence may contradict the cost considerations in the disassembly sequence, and vice versa. In this research, an integrated assembly and disassembly sequence planning model is presented. First, an assembly precedence graph (APG) and a disassembly precedence graph (DPG) are modelled. The two graphs are transformed into an assembly precedence matrix (APM) and a disassembly precedence matrix (DPM). Second, a two-loop genetic algorithm (GA) method is applied to generate and evaluate the solutions. The outer loop of the GA method performs assembly sequence planning. In the inner loop, the reverse order of the assembly sequence solution is used as the initial solution for disassembly sequence planning. A cost objective by integrating the assembly costs and disassembly costs is formulated as the fitness function. The test results show that the developed method using the GA approach is suitable and efficient for the integrated assembly and disassembly sequence planning. Example products are demonstrated and discussed.  相似文献   
83.
This study investigated the liquid state reaction of a Sn–3.0Ag–0.5Cu solder jointed with electroless Ni–P/immersion Au (ENIG) and electroless Ni–P/electroless Pd/immersion Au (ENEPIG) surface finishes. Treatments with various soldering temperatures (240, 250, and 260 °C) and times (60, 180, 300, and 600 s) were performed to study the microstructure evolution. Detailed interfacial images revealed that the morphology of (Cu,Ni)6Sn5 affects the formation of Ni3P and the curvature of the interface between them. In addition, the growth kinetics of (Cu,Ni)6Sn5 and (Cu,Ni,Pd)6Sn5 were studied and compared. The effect of grain coarsening during extended reflow modified the diffusion transport mechanism. However, because of the refinement of Pd on the grain structure, reduced IMC growth and a lower degree of transition from grain boundary diffusion to volume diffusion could be observed in the growth kinetics of (Cu,Ni,Pd)6Sn5. Moreover, the activation energy of IMC growth was evaluated using the Arrhenius equation. Pd may act as heterogeneous nucleation sites in the initial stage of soldering and lower the activation energy of (Cu,Ni,Pd)6Sn5, compared to (Cu,Ni)6Sn5. The lower activation energy of (Cu,Ni,Pd)6Sn5 growth ensured that no phase transformation occurred in the SAC305/ENEPIG joints, which may benefit the solder joint reliability. Finally, the detailed influence of Pd on the growth kinetics of IMC formation was investigated and discussed.  相似文献   
84.
One-dimensional (1D) zinc oxide (ZnO) nanostructures have been extensively and intensively studied for several decades not only for their extraordinary chemical and physical properties, but also for their current and future different electronic and optoelectronic device applications. This review provides a brief overview of the progress of different synthesis methods and applications of 1D-ZnO nanostructures. Morphology of ZnO nanostructures grown by various methods and progress in the optical properties are briefly described. Using low-temperature photoluminescence (LTPL) study, detailed informations about the defect states and impurity of such nanostructures are reported. Improvement of field emission properties by modifying the edge of 1D-ZnO nanostructures is briefly discussed. Applications such as different sensors, field effect transistor, light-emitting diodes (LEDs), and photodetector are briefly reviewed. ZnO has large exciton binding energy (60 meV) and wide band gap (3.37 eV), which could lead to lasing action based on exciton recombination. As semiconductor devices are being aggressively scaled down, ZnO 1D nanostructures based resistive switching (RS) memory (resistance random access memory) is very attractive for nonvolatile memory applications. Switching properties and mechanisms of Ga-doped and undoped ZnO nanorods/NWs are briefly discussed. The present paper reviews the recent activities of the growth and applications of various 1D-ZnO nanostructures for sensor, LED, photodetector, laser, and RS memory devices.  相似文献   
85.
86.
87.
The Liouville equation governing the evolution of the density matrix for an atomic/molecular system is expressed in terms of a commutator between the density matrix and the Hamiltonian, along with terms that account for decay and redistribution. To find solutions of this equation, it is convenient first to reformulate the Liouville equation by defining a vector corresponding to the elements of the density operator, and determining the corresponding time-evolution matrix. For a system of N energy levels, the size of the evolution matrix is N2?×?N2. When N is very large, evaluating the elements of these matrices becomes very cumbersome. We describe a novel algorithm that can produce the evolution matrix in an automated fashion for an arbitrary value of N. As a non-trivial example, we apply this algorithm to a 15-level atomic system used for producing optically controlled polarization rotation. We also point out how such a code can be extended for use in an atomic system with arbitrary number of energy levels.  相似文献   
88.
Assembly sequence planning (ASP) and assembly line balancing (ALB) play critical roles in designing product assembly systems. In view of the trend of concurrent engineering, pondering simultaneously over these two problems in the development of assembly systems is significant for establishing a manufacturing system. This paper contemplates the assembly tool change and the assembly direction as measurements in ASP; and further, Equal Piles assembly line strategy is adopted and the imbalanced status of the system employed as criteria for the evaluation concerning ALB. Focus of the paper is principally on proposing hybrid evolutionary multiple-objective algorithms (HEMOAs) for solutions with regard to integrate the evolutionary multi-objective optimization and grouping genetic algorithms. The results provide a set of objectives and amend Pareto-optimal solutions to benefit decision makers in the assembly plan. In addition, an implemented decision analytic model supports the preference selection from the Pareto-optimal ones. Finally, the exemplifications demonstrate the effectiveness and performance of the proposed algorithm. The consequences definitely illustrate that HEMOAs search out Pareto-optimal solutions effectively and contribute to references for the flexible change of assembly system design.  相似文献   
89.
Current feature recognition methods generally recognize and classify machining features into two classes: rotational features and prismatic features. Based on the different characteristics of geometric shapes and machining methods, rotational features and prismatic features are recognized using different methods. Typically, rotational features are recognized using two-dimensional (2-D) edge and profile patterns. Prismatic features are recognized using 3-D geometric characteristics, for example, patterns in solid models such as 3-D face adjacency relationships. However, the current existing feature recognition methods cannot be applied directly to a class of so-called mill-turn parts where interactions between rotational and prismatic features exist. This paper extends the feature recognition domain to include this class of parts with interacting rotational and prismatic features. A new approach, called the machining volume generation method, is developed. The feature volumes are generated by sweeping boundary faces along a direction determined by the type of machining operation. Different types of machining features can be recognized by generating different forms of machining volumes using various machining operations. The generated machining volumes are then classified using face adjacency relationships of the bounding faces. The algorithms are executed in four steps, classification of faces, determining machining zones, generation of rotational machining volumes and prismatic machining volumes, and classification of features. The algorithms are implemented using the 3-D boundary representation data modelled on the ACIS solid modeller. Example parts are used to demonstrate the developed feature recognition method.  相似文献   
90.
It has been pointed out that a permutation schedule can be improved by a non-permutation schedule in a flowshop with completion-time based criteria, but there is a lack of comprehensive analyses. This paper presents an extensive computational investigation concerning the performance comparison between permutation and non-permutation schedules. The computational results indicate that in general, there is little improvement made by non-permutation schedules over permutation schedules with respect to completion-time based criteria. But the improvement is significant with respect to due-date based criteria, including total tardiness and total weighted tardiness. The results provide practitioners a guideline as to when to adopt a non-permutation schedule, which may exhibit better performance but require additional computational and control efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号